

Using quasar physics to

improve the VLBI reference frames

STAS SHABALA University of Tasmania

with:

Lucia Plank, Jamie McCallum, Jim Lovell, Rob Schaap (UTAS)
 Johannes Böhm, Hana Krásná (TU Wien)
 Oleg Titov (Geoscience Australia)
 Jing Sun (Shanghai Astronomical Observatory)

Outline

- (1) What are these radio sources we look at ?
- 2 Quantifying the effects of quasar structure
- (3) VieVS structure simulator
 - Simulation strategy
 - Effect on the reference frames
 (Station positions : mm level
 Source positions : above ICRF2 noise floor)
- (**4**) Mitigation strategies

Uncooperative quasars

What you want them to be

- ♦ Bright point sources
- \diamond Fixed in space and time

What they are

- ♦ Supermassive black holes
- \diamond Jets \rightarrow structure
- \diamond Evolve on human timescales

Lister et al. (2009)

Stas Shabala - AOV15

Inner regions of an Active Galactic Nucleus

Image: BU / A. Marscher

One jet towards us (Doppler boosted) -> seen One jet away from us (D. deboosted) -> unseen

uv plane

interferometers measure
 correlated amplitude and phase
 image

←FourierTransform→ amplitudes/phases in uv pla

amplitudes/phases in uv plane

Simulated source

N-E plane projected in source direction

different location in uv plane depending on frequency and baseline

Source structure in geodetic VLBI

 \diamond Group delay = (1 / 2 π) (Δ phase / Δ frequency)

- phase depends on *projected* structure as seen by a given baseline
- + function of:
 - baseline
 - observing time
 - amount and direction of structure
- effect is different at each of 8 sub-bands at X-band (because frequencies are slightly different)

♦ Hence group delay (= slope across band) changes

N-E plane projected in source direction

different location in uv plane depending on frequency and baseline

N-E plane projected in source direction

different location in *uv* plane depending on frequency, baseline and time

Visibility phase

Jet – baseline orientation

3 effects of quasar structure

- 1. Measure incorrect position
 - Position offset (X, Y, Z) from "correct" value
- 2. Measure different positions for different schedules
 - Scatter in station positions for different baseline/ schedule combinations (even with same quasars)
 - ➔ increased rms for positions derived from different schedules
- 3. Multiple observations inconsistent with each other

Larger formal uncertainties, within a single session

slope changes with projected structure

slope $\neq 0$

Vienna VLBI Software (VieVS)

- Simulate geodetic observations
- Process simulated observations
 - → station / source positions, EOPs

Quasar structure simulations

- Quasars ≠ point-like
- Extra structure delay per observation
- (mostly) Mock source catalogues

Simulated catalogues

 ♦ Structure indices → mock quasar images SI = 1 + 2 log (τ / ps)
 ♦ Choose SI (none, 1, 2, 3, 4, ICRF2 distribution)

SI 3 = 10 ps

Also one "real" CONT11 catalogue

- Simulate realistic schedules with VieVS
 - ◆ CONT11
 - o 15 29 September 2011
 - 13 stations
 - 30 realizations of each day
 - Additional delay term due to source structure

CONT11

Station positions – X coord

Shabala+15, J. Geodesy

Station positions – Y coord

Station positions – Z coord

Shabala+15, J. Geodesy

Station positions – 3D coord offset

Shabala+15, J. Geodesy

Station positions – 3D coord offset

Shabala+15, J. Geodesy

EOP rms

UTAS Source structure : effects on CRF

•

0 Schaap et al. 2013, MNRAS, 434, 585 0 More structure worse source positions 0 = 0 \circ 0 0 3.5 less stable positions a/ µas 3.0 log 00 2.5 1 0 1.15 T. T. ST. 1.52 00' LS: 5. 1. 1. ±5. ,×. A. L.S. رمن فری کرد. Structure Index 6 OBSERVED more structure

Modeling structure

0

0

faint

far

0.1

0.2

relative brightness of second component

0.3

0.4

bright

near

♦ "Good" (SI = 2) sources can be bad

$$SI = 1 + 2 \log (\tau / ps)$$

60

40

20

0

0

faint

far

no SS SI=2

SI=3 SI=4

0.2

relative brightness of second component

0.3

0.4

bright

near

0.1

- \diamond 104 sim sessions in 2013
- ♦ Systematic
- \diamond Tens of μ as

Delay maps

- ♦ Structure delay vs projected baseline
- ♦ SI=3 /4
 - delay changes rapidly with baseline
 - \rightarrow "noise" like term
- ♦ systematic shift for SI=2

Plank+16, MNRAS

 \diamond direction of displacement vs jet direction

Plank+16, MNRAS

 \diamond 104 simulated sessions for year 2013

♦ direction of displacement vs jet direction

- \diamond 104 simulated sessions for year 2013
- ♦ SI = 2: displacement preferentially in the jet direction
- \Rightarrow SI = 3 / 4: no relationship between jet and offset directions
 - effects of different baselines "cancel out"

Plank+16, MNRAS

Good news

 We can image quasar structure (and make corrections)

Lister et al. (2009)

Stas Shabala - AOV15

Good news

 We can image quasar structure (and make corrections)

Bad news

Quasars evolve (need to to this often)

Lister et al. (2009)

Stas Shabala - AOV15

How do we improve the Reference Frames ? UTAS (with quasar physics)

Good news

- ① We can image quasar structure
- 2 Jet direction remains constant (avoid unfavourable baseline – jet orientation)

Bad news

Good news

- ① We can image quasar structure
- 2 Jet direction remains constant
- Quasars evolve !
 (observe quasars when they are "well behaved")

Bad news

Quasars evolve

Quasar evolution

• Structure anti-correlates with flux density

→ Observe sources when flux density is high (and so structure is small)

Source 1357+769

Shabala+16, REFAG proc., submitted

OBSERVED

Dec Deviation (mas)

0

Τ

 $\overset{\mathsf{N}}{\vdash}$

-2

Quasar evolution

• Structure anti-correlates with flux density

→ Observe sources when flux density is high (and so structure is small)

OBSERVED

• Position scatter decreases for sources with high flux density

If we have to observed a 'bad' quasar...

- 1. Schedule with respect to jet direction
 - Optimise for given set of baseline / jets
 - Structure changes; jet direction (mostly) does not

If we have to observed a 'bad' quasar...

- 1. Schedule with respect to jet direction
 - Optimise for given set of baseline / jets
 - Structure changes; jet direction (mostly) does not
- 2. Solve with respect to jet direction
 - Along / orthogonal to jet (instead of RA / Dec)
 - Position along jet: allowed to vary (nuisance parameter)
 - Orthogonal: well-defined single position
 - Improvement seen in simulations (Plank+ 2016)
 - Real test: VGOS observations

Summary

- Quasars are not point sources
 - o extra group delay
 - ♦ Baseline-, time-, frequency- dependent
 - o systematic error → simply more observations won't help

• Quasar structure simulations with VieVS 2.2

- ♦ new source structure simulator module
- ♦ mock + real quasar catalogues
- ♦ station positions affected at mm level

Shabala+15, J. Geod, 89, 873

- Plank+16, MNRAS, 455, 343
- ♦ source positions at 50 uas level
- Mitigation strategies
 - corrections using source images in analysis (difficult)
 - not scheduling unfavourable jet / baseline combinations
 - avoid long baselines parallel to jet
 - ✤ source selection
 - radio sources vary in structure on year timescales
 - more compact when flaring (bright)

Inner regions of an Active Galactic Nucleus

Quasar structure in VGOS

Quasars

What you want them to be

- \diamond Bright point sources
- \diamond Fixed in space and time

What they are

- ♦ Supermassive black holes
- \diamond 10⁶ times more distant than stars

Structure delay (ps)

EOP formal error (structure only)

EOP formal error (with trop.)

Stas Shabala - AOV15

median of 15 x 30 realizations

