

# Application of the AOV network for radio source data production

Oleg Titov (Geoscience Australia)



APPLYING GEOSCIENCE TO AUSTRALIA'S MOST IMPORTANT CHALLENGES



#### Outline

- 1. Structure delay
- 2. Modelling
- 3. Radio source astrometry
- 4. Technology impact
- 5. Asia Oceania VLBI opportunities
- 6. General relativity experiments

## General Relativity (Titov, Girdiuk, 2015)



 $\tau_{GR} = \alpha \frac{b}{c} \sin \varphi \cos A$ 

#### Any positional offset results in extra time delay

 $\alpha$  - light deflection;  $\tau$  – group delay



#### **Structure delay**

#### no difference with the GR effect





# $\tau = \alpha \frac{b}{c} \sin \varphi \cos A$

#### GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2012

## Modeling (Charlot, AJ, 1990)



# CONT'14 – many "unstable" sources were observed

CONT'14, post-fit residuals of radio source 0014+813 (strong astrometrically unstable, many scans during the 15-day campaign)

Post-fit residuals after global adjustment may reveal a signal as a function of angle A



#### Radio source 0014+813 (VLBA image)



This research has made use of the United States Naval Observatory (USNO) Radio Reference Frame Image Database (RRFID).

Commonwealth of Australia (Geoscience Australia) 2012

#### Radio source 0014+813 (Titov, 2007)



Fig. 3. Daily estimates of the coordinates for the quasar 0014+813 in declination and approximation by linear splines.

0014+813, Wettzell - Westford



Short baselines do not reveal a signal!

GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2012

0014+813, Wettzell - Westford

Wettzell - Westford, CONT'14



Commonwealth of Australia (Geoscience Australia) 2012

0014+813, Wettzell - NyAles20



Short baselines do not reveal a signal!

0014+813, Westford - Onsala60

Westford - Onsala60



1 mas = 3 cm

Commonwealth of Australia (Geoscience Australia) 2012

## Modeling (Charlot, AJ, 1990)



# Modeling (two-component model)

| Baseline             | R (mas) | К    | Phase<br>(degrees) | Stucture<br>index,<br>Δα | Length (thousands<br>km) |          |
|----------------------|---------|------|--------------------|--------------------------|--------------------------|----------|
| WESTFORD<br>YEBES40M | 0.60    | 0.40 | 164                | -4.0                     | 5377                     |          |
| WESTFORD<br>ONSALA60 | 0.60    | 0.47 | 165                | -2.6                     | 5601                     |          |
| WETTZELL<br>BADARY   | 0.55    | 0.33 | 175                | -1.0                     | 5726                     | R, phase |
| WESTFORD<br>WETTZELL | 0.60    | 0.40 | 170                | -2.8                     | 5998                     | stable   |
| NYALES20<br>TSUKUB32 | 0.60    | 0.25 | 160                | -1.0                     | 6498                     |          |
| YEBES40M<br>BADARY   | 0.60    | 0.30 | 170                | -3.8                     | 7079                     |          |
| ZELENCHK<br>TSUKUB32 | 0.60    | 0.25 | 180                | -5.0                     | 7441                     | Κ. Δα -  |
| WESTFORD<br>ZELENCHK | 0.60    | 0.70 | 175                | -2.1                     | 7770                     | variable |
| TSUKUB32<br>ONSALA60 | 0.55    | 0.85 | 175                | -1.0                     | 7940                     | Variabie |
| WETTZELL<br>TSUKUB32 | 0.40    | 0.47 | 175                | -5.0                     | 8445                     |          |
| WESTFORD<br>BADARY   | 0.60    | 0.85 | 175                | -4.2                     | 8672                     |          |
| TSUKUB32<br>YEBES40M | 0.40    | 0.55 | 185                | -5.0                     | 9510                     |          |
| WESTFORD<br>TSUKUB32 | 0.40    | 0.62 | 170                | -5.0                     | 9506                     |          |

**GEOSCIENCE AUSTRALIA** 

0014+813, Nyales20 - Tsukub32

Tsukub32 - Nyales20, CONT'14



1 mas = 3 cm

Commonwealth of Australia (Geoscience Australia) 2012

0014+813, Westford - Tsukub32

Westford - Tsukub32



Spectral index difference is important!

1 mas = 3 cm

(Geoscience Australia) 2012

Westford - Zelenchk, CONT'14



Kokee - Tsukuba32, CONT'14



Wettzell - Kokee, CONT'14



#### **Structure index**

- Caused by the difference between core and jet. Core is optically thick, index is about +2.5, jet is optically thin with electron spectral density -2.5 (Charlot, 1990).
- 2. Additional contribution may come from hardware. The X-band is 1 GHz width (8.0 9.0), and all 8 channels are not calibrated.
- 3. Some hidden features? RFI? Source polarization? Ionosphere?

# Application

- 1. Equatorial sources to be targeted by a network spread over both hemispheres. A range of baseline lengths is important.
- 2. AOV network looks good because it makes many baselines, although not too long.
- 3. A typical network should include a limited number of sources (<20) to produce more scans per sources for each baseline
- 4. Structure index is a critical parameter, could be caused by either the source nature or the receiver calibration (channels!)
- 5. Testing of the same source with the same network at different bandwidth (256, 512, 1024 Mbps in X band) may be interesting
- 6. The point whether <u>technology meets data analysis</u>. The residuals are directly hit by the hardware performance.

### Conclusion

- 1. The equation linking group delay and light deflection could be used in other applications.
- 2. Systematic signal in post-fit residuals is found ("positional angle" A)
- 3. The systematic signal is likely to be caused by the source structure
- 4. Two-component model (core + jets in opposite directions) has been tried for 0014+813 during CONT'14; structure index is important!
- 5. Positional shift in declination of ~100 μas was found for 0014+813, but it may reach 1 mas.
- 6. No necessary make images to reduce VLBI data for the structure delay (resource saving!)

#### **General relativity**



#### **Big expedition** to observe Solar eclipse since 1919



# VLBI is doing that every session!

#### GEOSCIENCE AUSTRALIA

Commonwealth of Australia (Geoscience Australia) 2012

#### **Light deflection in VLBI**



#### For a radio source within 1° from Sun

#### **Brane world gravity** Randall and Sundrum (1999); Rubakov (2001)



For a radio source within 1° from Sun, magnitude is conditional

GEOSCIENCE AUSTRALIA

#### Light deflection angle and residuals

0229+131, 1991-2001, IRIS-A/NEOS-A

Residuals 0229+131, 1991-2001, IRIS-A/NEOS-A



Precision is worse near the Sun, and better near to the anti-Sun point

GEOSCIENCE AUSTRALIA Geoscience Australia) 2012

#### **Brane world gravity** Randall and Sundrum (1999); Rubakov (2001)

$$V(r) = G_N \frac{m_1 m_2}{r} \left( 1 + \frac{1}{r^2 k^2} \right)$$

$$\alpha \sim ctg\theta$$



Correction to right ascension

For a radio source within 1° from Sun, magnitude is conditional

GEOSCIENCE AUSTRALIA Commonwealth of Australia (Geoscience Australia) 2012

## List of quasars within 0°.1 from ecliptic

0°.075 0055+060 0547 + 2340.025 0558+234 -0.0230603+234 0.049 0723+219 -0.0700725+219 -0.00187 7" 0741+214 0.075 0749+211 0.076 0956+124 -0.0951226-028 0.012 1346-109 0.062 1437-153 0.036 1907-224 0.045 2243-081 -0.0652322-040 0°.008 ~25"

10/11 Jan 2016

Two close sources. 0°.6; Phase-reference

observations are possible

#### **Special session 10/11 Jan 2016** (David Mayer calculations)



10 Jan 2016 18 UT



11 Jan 2016 18 UT

7" approach

Big radio telescopes from Asia are required! Next chance in 4 years.



Australian Government

**Geoscience** Australia

#### **Any Questions?**

#### Thank you for your attention



Phone: +61 2 6249 9111

Web: www.ga.gov.au

Email: oleg.titov@ga.gov.au

Address: Cnr Jerrabomberra Avenue and Hindmarsh Drive, Symonston ACT 2609 Postal Address: GPO Box 378, Canberra ACT 2601