

Keynote Presentation - Synergy aspects of AOV and IVS -

Axel Nothnagel IVS Chair c/o Institute of Geodesy and Geoinformation, University of Bonn

IVS Terms of Reference

¹The International VLBI Service for Geodesy and Astrometry (IVS) is an international collaboration of organizations which operate or support Very Long Baseline Interferometry (VLBI) components.

Collaborations

- IVS components
- IVS regional organizations such as AOV or EVGA
- IVS global community
- Global VLBI community including astronomers
- → Synergies by sharing observing and analysis resources, know-how and experience
- → Self-organisation

niversität**bonn**

IVS Terms of Reference

²IVS provides a service which supports geodetic and astrometric work on

- Reference systems,
- Earth science research, and
- Operational activities.
- \rightarrow Scientific and operational customers

Service aspect is important

(users do not always see the work of the IVS and its components)

The IVS and regional groups such as AOV - Realistic interactions and optimistic expectations -

- Support of global IVS activities
 observations, correlations, analysis, research and development
- Regional stabilization of the VLBI reference frame
 - dedicated observing campaigns
 - dedicated analyses
- Exploration of close-range interactions between participants
 observations++ for research and development activities
- Public relations
- Triggering activities related to the Global Geodetic Reference Frame (GGRF) of the UN-GGIM initiative (on national grounds)
- Solve open issues of geodetic and astrometric VLBI, possibly by intense collaborations within AOV

5

Observations

- Inherent precision of observables
- Phase stability beyond phase calibration, i.e. maser link to 5 MHz distributor
- Manual vs. genuine phase calibration
- Delay calibration
- Proper T_{sys} monitoring

Auxiliary information

- Measurements and documentation of met sensor locations
- Documentation and application of ΔP (sensor ref. Point)
- Radio telescope surveys for
 - Stability monitoring
 - Local ties to other sensors
 - Paraboloid deformation surveys [see later]

Correlation and fringe fitting

- Systematic investigations in phase calibrations
- Multi tone phase cal which frequencies to exclude
- Bandpass calibration
- Amplitude calibration
- Alternatives for HOPS fourfit

Analysis

- Systematic investigations in
 - Effects of bandwidths and recording rates on results
 - phase and cable cal effects (missing, manual)
 - effects of missing channels
 - network effects on results
 - handling of sub-ambiguities
- Polar motion comparisons with GPS on a network by network basis
- Proper determination of frequencies for ionosphere calibration
- Apply existing in-situ calibration measurements for thermal expansion (Wettzell, Onsala ?)
- Investigations in modern WVR observations
- Fully populated covariance matrix with turbulence model (Halsig et al.)

Documentation and outreach

- Documentation of issues and solutions
- Public relations and advertising
- Flyer, Video

Deformations of radio telescopes due to gravitational bending and their effect on VLBI results

Telescope deformations

11

When tilted towards the horizon

- Main reflector folds inwards
- Focal length of main reflector reduces
- Leg bases of quadrupod move upwards
- Subreflector moves upward by same distance

Medicina 32 m telescope (Italy)

universität**bonn**

Terrestrial Laser Scanning (TLS)

Medicina and Noto 32 m telescopes

Sarti, Abbondanza, Vittuari 2009b (J Geod)

Sarti, Abbondanza, Petrov, Negusini 2011 (J Geod)

Effelsberg 100 m telescope (Germany)

Effelsberg results

universität**bonn**

Focal length change 13 mm, 100 m Ø

Onsala 20 m Telescope

15

Onsala 20 m Telescope

Telescope deformations

universität**bonn**

When tilted towards the horizon

- Main reflector folds inwards
- Focal length of main reflector reduces (path length effect factor ~ minus 1/8)
- Leg bases of quadrupod move upwards
- Subreflector moves upward by same distance (path length effect factor ~2)

Computation of effect on delays

$$\alpha_R'' = 2\pi (F^2 - a^2)^2 \int_{t_1}^{t_2} I_n(t) \, \frac{t}{t^2 F^2 - a^2} \, t \, dt$$

with t = r/2F and

$$\alpha_F'' = 2 - 2\alpha_R''$$

$$\Delta L_3(\varepsilon) = \alpha_F'' \cdot \Delta F(\varepsilon).$$

 $\Delta L_5(\varepsilon) = 2 \, \alpha_B'' \cdot \Delta R(\varepsilon)$

$$\Delta \tau(\varepsilon) = \frac{1}{c} \left[\Delta L_3(\varepsilon) + \Delta L_5(\varepsilon) \right]$$

Artz, Springer, Nothnagel; A complete VLBI delay model for deforming radio telescopes: The Effelsberg case, JoG, 2014

1. Illumination function 2. $\Delta F = -9.6 \text{ mm}$ 3. $\alpha_{r}^{"} = -0.1230$

(1)

4.
$$\Delta L_3 = 1.18 \text{ mm}$$

5.
$$\Delta R = 2.72 \text{ mm}$$

6. $\alpha_R^{"} = 1.0615$
7. $\Delta L_5 = 5.77 \text{ mm}$

 $\Delta L = 6.95 \text{ mm}$ (23.2 ps) at 5° elevation

19

First estimates

Medicina, Sarti et al 2011 $\Delta U = deformed - corrected = 8.9 mm (up)$ $\rightarrow \Delta U \sim 90\%$ of max. ΔL with opposite sign

Applied to Onsala $\Delta U = deformed - corrected = \sim -6 mm (down)$

Onsala

GPS VLBI Tie Discrepancies								
Id DOMES	Soln Id	DOMES	Soln	East 1	North	Up	Tie	
				mm	mm	mm		
ONSA 10402M00	4 2 7213	104025002	2 1	1.5	-1.4	4.4	2014 Doy173	22

Conclusions

 Surveys of all radio telescopes are needed for correcting deformation effects by gravitational bending

© T. Schüler 2016

Best wishes for a sucessful

2nd General Meeting of the AOV